- GL_EXT_texture_compression_s3tc
- GL_S3_s3tc
http://onthim.blogspot.com/p/onthim-downloads.html
Cheers,
Imam
# define object for holding a set of temperature data
class TempData():
def __init__(self):
self.day = [] # list of days
self.temp = [] # list of temperature
csv_imported_data = TempData() # create object for holding csv file temperature data
processed_data = TempData() # create object for holding processed datacsv_file = open('data.csv', 'r') # open the csv file for reading
reader = csv.reader(csv_file) # pass the file to csv reader object for extracting data
for row in reader: # get the row data from the csv file
csv_imported_data.day.append(float(row[0])) # get the first column data
csv_imported_data.temp.append(float(row[1])) # get the second column data
csv_file.close() # close the csv file# print temperature data from the temperature object
for i in range(len(csv_imported_data.day)):
print(csv_imported_data.day[i], csv_imported_data.temp[i])# show average temperature from the temperature object
print('Average temperature for', len(csv_imported_data.day), 'days was', sum(csv_imported_data.temp)/len(csv_imported_data.temp))# find difference between temperatures and store in temperature data object
for i in range(len(csv_imported_data.day)):
if (i == 0): # no difference for first data
processed_data.day.append(csv_imported_data.day[i])
processed_data.temp.append(0)
else:
processed_data.day.append(abs(csv_imported_data.day[i] - csv_imported_data.day[i-1]))
processed_data.temp.append(abs(csv_imported_data.temp[i] - csv_imported_data.temp[i-1]))# print temperature difference data from the temperature object
for i in range(len(processed_data.day)):
print(processed_data.day[i], processed_data.temp[i])csv_file = open('processed_temp_data.csv', 'w', newline='') # create a new csv file for writing
csv_writer = csv.writer(csv_file) # pass the file to csv writer object for writing data
for row in zip(processed_data.day, processed_data.temp): # create the row data from the the temperature object
csv_writer.writerow(row)
csv_file.close()